AUTO gy QUAD

Waypoint Live Recording

By Angel Fernandez
(aka “afernan”)

Sep’13
WLR SPECITICALION ...ttt bbbt 1
Code changes eXPlanation ..........ccviieiieieiie i 2
CRANGES TN “NAV.C” ...ttt ettt bbbt se e 2
“nav.h” defines the new variables and functions USEd: ..........cccceveveneieieninesieienns 3
Annex 1: code Changes OVET 1220 .........ooiiiiiiiiieiesie ettt 4
ANNEX 2. OB CONCEPLS ...ttt et e enreeee s 5
SWILCN DEDOUNCING ... 5

WLR specification

The goal of this "mod" is to enable AQ code with the possibility of recording
waypoints (wp’s) during flight.

By using the transmitter "gear" switch (ch5), each time that is set, a new waypoint is
added to the list. Then you can run it with “auto” mode, as usual, or download to GCS
to edit.

This feature lets you fly auto missions without the need of any gcs. Convenient sound
signals are set to drive you in the process.

This mod is done in AQ6.6 r220

Main features:

It can record wp’s in “manual” or “position hold” mode

It can record wp’s while in ARMED or DISARMED

3D position recorded. Absolute altitude recorded (wp’s have 3D info)

To delete WP’s simply set ROLL stick to the top left while in DISARMED

See how performs in this video


https://vimeo.com/74000021

Code changes explanation
(Annex 1 shows complete list of code lines changed)

There are only two file affected: nav.c and nav.h
The basic idea is to introduce in the “main loop” inside “nav.c”
void navNavigate(void){}

an “if” statement that controls when switch “gear” is activated, and then launch the
recording of a new wp thru an specific function.

Changes in “nav.c”

When the Tx gear switch is set...
it (RADIO_GEAR > 250) {

We want the “main loop” runs very quickly. Since our switching by hand will take
some time, we don’t want to record many times same WP. This is known as « switch
debouncing » problem. To avoid that effect we set a flag:

navData.set _flag = 1; // to avoid debouncing

Then, we need to wait a certain time until set the waypoint (let say 0.5 sec). To do that
we read a reference time first:

navData.navSetWPtimer = timerMicros();

then we wait 0.5s before recording the WP. Once fulfilled we launch the actual function
to record a new waypoint:

navSetWpCurrent(navData.wp_index);

we make a very short beep (to minimize the impact in the main loop)
signalingBeep(2000, 50);
we increase the WP index (starts in “0”) and control that is lower than the maximum
number of wp’s:
navData.wp_index++; // increase waypoint index
we reset the flag (= ...”Hey I'm ready to record another WP”)
navData.set _flag = O;
we reset the timer and send a message
navData.navSetWPtimer = O;
AQ NOTICE (“'waypoint set™);

The function navSetWpCurrent assign the actual GPS information to new WP.



Deleting all WP’s

To delete all WP’s we need to launch the function:
navClearWaypoints();

This is done ONLY when, rec switch (ch5) is “off” and AQ “DISARMED”. It sounds 3
beeps and a message acknowledge.

Changes in “nav.h”

“nav.h” simply defines the new variables and functions used:

uint8_t wp_index; //afd WLR index
uint8_t set_flag; //afd WLR flag
uint32_t navSetWPtimer; //afd WLR timer

extern void navSetWpCurrent(int k); //afd



Annex 1: full code changes over r220

Nav.c, line 82 add:

// afd

void navSetWpCurrent(int k) {
navData.missionLegs[k]-type = NAV_LEG_GOTO;
navData.missionLegs[k].relativeAlt = 0;
navData.missionLegs[k].targetAlt = UKF_ALTITUDE +
navUkfData.presAltOffset;
navData.missionLegs[k].targetRadius = 1.0T;
navData.missionLegs[k].targetLat = gpsData.lat;
navData.missionLegs[k].targetLon = gpsData.lon;
navData.missionLegs[k].maxHorizSpeed = 2.0F; // m/s
navData.missionLegs[k]-poiHeading = -0.0F; // relative
AQ_NOTICE("point set\n');

}
Nav.c, line 390 add:
// afd WLR = WPs Live Recording using Ch5, RADIO_GEAR

// waypoint recording : gear switch down 1s = record waypoint
if (RADIO_GEAR > 250) {

navData.set_flag = 1; // set waypoint on switch low to high(debouncing)
navData.navSetWPtimer = timerMicros();
by

// only record when switch is held for 1 second.
it ( ( navData.set_flag) && (( timerMicros() - navData.navSetWPtimer) > (5e5) ) ){
navSetWpCurrent(navData.wp_index);
signalingBeep(2000, 50);
navData.wp_index++; // increase waypoint index
navData.wp_index = constrainlnt(navData.wp_index,0, NAV_MAX_MISSION_LEGS);
navData.set_flag = O;
navData.navSetWPtimer = O;
AQ_NOTICE ('waypoint set');

}

// 1 waypoint "rec switch is low" AND "AQ not armed"™ AND "roll is held left"” then erase waypoints...
if ( (InavData.set_flag) && (RADIO_ROLL < -550) && (supervisorData.state == STATE_DISARMED) ){

navClearWaypoints();
signalingBeep(2000, 50);
delay(200);

signal ingBeep (2000, 50);
delay(200);

signalingBeep(2000, 50);
AQ_NOTICE (“'waypoints deleted");

navData.set _flag = O;
navData.wp_index = O;
by
Nav.h, line 127
uint8_t wp_index; //afd WLR index
uint8_t set_ flag; //afd WLR flag
uint32_t navSetWPtimer; //afd WLR timer
Nav.h, line 149

extern void navSetWpCurrent(int k); //afd



Annex 2. Other concepts
Switch Debouncing

“Switch debouncing” is one of those things you generally have to live with when
playing with switches and digital circuits. If you want to input a manual switch signal
into a digital circuit you'll need to debounce the signal so a single press doesn't appear
like multiple presses.



	WLR specification
	Code changes explanation
	Changes in “nav.c”
	Changes in “nav.h”
	“nav.h” simply defines the new variables and functions used:

	Annex 1: full code changes over r220
	Annex 2. Other concepts
	Switch Debouncing


